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Abstract. A minimal-parameter tight-binding theory incorporating explicit use of nonorthog-
onality of the basis is used to generate a transferable scheme for germanium. Good results are
obtained for high-pressure bulk phases and vibrational frequencies. Diamond structure is found
to be the ground state even when compared with the clathrate structure. The results for clusters
show good agreement withab initio predictions.

1. Introduction

Among the group IV elements, carbon and silicon have been the focus of extensive research
due to their technological importance. In contrast, germanium has not been studied in such
detail. Recently, a total-energy scheme based on the orthogonal tight-binding method has
been reported [1]. The tight-binding parameters were obtained by fitting to the band structure
of ab initio calculations. Additional fitting information was obtained from the high-pressure
ab initio phase diagram of Yin and Cohen [2]. Furthermore, a complex distance dependence
of the parameters was invoked for obtaining the elastic constants in the diamond phase of
bulk Ge. More recently, a density-functional-based nonorthogonal tight-binding approach
has been used for studying Ge [3], although no vibrational analysis was reported for any
phases of Ge. There have been a number of experimental [4, 5] and theoretical [6–12]
studies of small germanium clusters.

In this work we introduce a transferable nonorthogonal tight-binding scheme for Ge
that works all the way from dimer to bulk phases of Ge. The computational efficiency of
the tight-binding method derives from the fact that the Hamiltonian can be parametrized.
Furthermore, the electronic structure information can be easily extracted from the tight-
binding Hamiltonian which, in addition, also contains the effects of angular forces in
a natural way. In keeping with the spirit of our early approach for Si [13–17], we
employ the universal scheme of Harrison [18] which allows us to keep the number of
adjustable parameters to a minimum. The physical quantities used to determine the
adjustable parameters include bulk lattice constant and the vibrational frequencies. Explicit
incorporation of the nonorthogonality of the orbitals [19] allows better description of the
local coordination information when compared to the conventional orthogonal tight-binding
schemes. The local coordination information has been found to be crucial in obtaining
accurate energetic ordering of different isomers of Si clusters [13–15, 17].
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The atomic forces can also be easily evaluated in tight-binding theory if the distance
dependence of the parameters is known. This enables molecular dynamics simulations
for determining minimum energy structures to be performed. Furthermore, one can also
construct the dynamical matrix for the determination of vibrational frequencies by invoking
higher derivatives of the Hamiltonian matrix elements [16].

In this paper we present the construction of a transferable nonorthogonal tight-binding
Hamiltonian for Ge systems, and obtain results for structural and vibrational properties for
bulk and cluster phases. In the following section we briefly review the formalism. The
results are presented in section 3.

2. Technique

The details of the construction of the nonorthogonal tight-binding Hamiltonian and the
evaluation of the total energy and forces can be found in references [13–17]. Here we give
a brief summary.

In the tight-binding theory, the total energy of the system is given by the sum

U = Uel+ Urep+ U0 (1)

whereUel is the sum of the one-electron energiesεk for the occupied states:

Uel =
occ∑
k

εk (2)

andUrep is given by a repulsive pair potential

Urep=
∑
i

∑
j>i

φ(rij ). (3)

Here rij is the separation of atomsi and j . φ(r) is short ranged and taken to scale
exponentially with distance [17].U0 is a constant that simply shifts the zero of energy.

In the nonorthogonal tight-binding scheme the characteristic equation is written, in
matrix form, as

(H− EnS)Cn = 0 (4)

whereCn is a column vector of LCAO coefficients.H is the Hamiltonian matrix andS the
overlap matrix of the LCAO basis set [13, 19].

The Hellmann–Feynman theorem for obtaining the electronic part of the force is given
by [13]

∂En

∂x
= C

n†(∂H/∂x − En ∂S/∂x)Cn

Cn†SCn
. (5)

TheCn are normalized so that

C†SC = 1. (6)

In the Slater–Koster scheme the Hamiltonian matrix elements are obtained from the
parametersVλλ′µ in terms of the bond direction cosinesl, m, n [13, 18, 20], and theVλλ′µ(r)
are taken to decrease exponentially withr:

Vλλ′µ(r) = Vλλ′µ(d0)e
−α(r−d0) (7)
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where d0 is the sum of the covalent radii of the pair of interacting atoms andα is an
adjustable parameter. The fourVλλ′µ(d0) are derived from the dimensionlessuniversal
parameters through a prescription given by Harrison [18]:

Vλλ′µ(d0) = ηλλ′µ h̄2

md2
0

. (8)

Theuniversalparameters were taken from reference [21] and have the valuesηssσ = −1.73,
ηspσ = 1.84, ηppσ = 2.42, ηppπ = −0.78. The corresponding Hamiltonian parameters are
Vssσ = −2.214,Vspσ = 2.355,Vppσ = 3.097 andVppπ = −0.998.

The scaling of the repulsive term is also taken to be exponential:

φ(r) = φ0e−β(r−d0) (9)

whereβ = 4α [17].

Table 1. Parameters used in the present scheme for germanium.

A priori parametersa Adjustable parameters

εs εp d0 α φ0 σ

(eV) (eV) (Å) (Å−1) K0 (eV) (Å−2)

−14.38 −6.36 2.44 1.604 1.5 0.22 1.8

a Reference [18].

In the nonorthogonal scheme, the overlap matrix is calculated in the spirit of extended
Hückel theory [22] by assuming a proportionality betweenH andS [19]:

Sij = 2

K

Hij

Hii +Hjj . (10)

The diagonal elements ofHij , as in the orthogonal theory, are taken to be the valence s
and p energies. The off-diagonal inter-atomic matrix elements are given in terms of the
Hamiltonian matrix elements in orthogonal theory,Vij , by

Hij = Vij
[

1+ 1

K
− S2

2

]
(11)

where

S2 = Sssσ − 2
√

3Sspσ − 3Sppσ

4
(12)

is the nonorthogonality between sp3 hybrids [19]. The quantitiesSλλ′µ are determined from

Sλλ′µ = 2Vλλ′µ
K(ελ + ελ′) . (13)

We take a simple exponential distance dependence in the expression for the nonorthogonality
coefficient,K:

K(r) = K0eσ(r−d0)
2
. (14)

In table 1 we list all of thea priori (εs, εp and d0) and adjustable (α, K0, φ0 and σ )
parameters used for Ge.
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3. Results

3.1. Solid

In this section we present our results obtained using the nonorthogonal scheme. All of the
results are obtained without introducing any artificial cut-off in the interactions. In practice
this is achieved by increasing the shell size until the results remain unchanged. This implies
inclusion of up to the third-neighbour shell (corresponding to a cut-off of 5.5Å).

Figure 1. The cohesive energies of various structures of germanium using the present scheme.

Figure 1 shows the zero-temperature phase diagram for germanium obtained by our
method. The high-pressure-phase (fcc, sc) results are in good agreement with those obtained
from LDA-based calculations. The energy differences between various phases are also in
good agreement with the results of Sitchet al, obtained using a density-functional-based
nonorthogonal tight-binding approach [3]. In computing the electronic energies, special-
point integrations were performed and tested for convergence. As can be seen in the figure,
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Figure 2. The clathrate structure containing 34 atoms in a face-centred cubic (fcc) unit cell
(Fd3m symmetry).

Table 2. Comparisons showing transferability for germanium. The numbers in parentheses are
ab initio and experimental values.

Bond length Vibrational frequency
(Å) (cm−1)

Ge (dimer) 2.35 (2.36–2.42)a 258 (275)b

Ge (diamond) 2.44 (2.44)c 0TO: 344 (301)d

LLO: 259 (250)d

LLA : 204 (217)d

XLO: 303 (275)d

XTO: 246 (248)d

a References [6–11].
b Reference [12].
c Reference [18].
d Experimental values given in references [28, 29].

the diamond structure is the lowest in energy—even when compared with the clathrate
structure [23, 24] with the same coordination—with a difference in energy of 0.07 eV/atom.
The clathrate structure considered contains 34 atoms in a face-centred-cubic (fcc) unit cell
[23, 24]. The structure was fully relaxed by incorporating a constant-pressure ensemble
[25–27] into the molecular dynamics scheme to allow for simultaneous relaxation of the
lattice and basis degrees of freedom. The relaxed structure is shown in figure 2. The lattice
constant for the 34-atom unit-cell Ge clathrate was obtained to be 14.93Å. We note that
Sitch et al [3] did not report comparisons of the stability of the clathrate structure to those
of other phases of Ge.

The force constants for the evaluation of vibrational modes are obtained by employing
analytic second derivatives of the electronic structure Hamiltonian matrix elements [16].
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This method, while providing better accuracy than conventional schemes, greatly expedites
the determination of vibrational modes for large-size clusters. The vibrational frequencies
at some symmetry points for the bulk diamond phase are given in table 2. Both the acoustic
and optical branch phonons are in excellent agreement with experiment, with maximum
mode deviations of only up to about 14% from experiment [28, 29]. As shown in the
next section on clusters, the same scheme gives a reasonable vibrational frequency for the
symmetric stretch mode of the dimer. The authors of reference [3] did not provide any
results for vibrational frequencies for the bulk diamond phase of Ge.

3.2. Clusters

We next briefly describe our results for small germanium clusters using the present scheme.
All of the geometries were optimized by molecular dynamics relaxation using precisely the
same tight-binding parameters. No cut-off is used in the present calculations.

For Ge2, we obtain a dimer bond length of 2.35̊A and a vibrational frequency of
258 cm−1. The ab initio values for the bond lengths are in the range 2.36–2.42Å [8–
12]. Theab initio coupled-cluster calculations give a dimer frequency of 275 cm−1 [12]. In
table 2 we compare our results with experiment for bond lengths and vibrational frequencies
at the dimer and bulk ends to illustrate the transferability of the present scheme.

Figure 3. Geometries of the lowest-energy structures of small germanium clusters for sizes
from N = 5 toN = 10 obtained using the present molecular dynamics scheme.

The minimum-energy structure for Ge3 is found to be an open triangle with C2v

symmetry. Two sides of the triangle have bond lengths of 2.348Å each and the third
side has a bond length of 2.892̊A. For N = 4 we find the stable structure to be a
rhombus (D2h symmetry) with side length of 2.473̊A. The shorter diagonal has a length
of 2.731Å. For Ge5, the lowest-energy configuration is found to be a strongly compressed
trigonal bipyramid (D3h symmetry) with apex atoms holding the triangle together, as shown
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Table 3. Cohesive energies (in eV/atom) for GeN clusters. The value of the constant shiftU0 in
equation (1) is taken to be 1.0 eV to bring the absolute values into agreement with experiment.

Binding energy (eV/atom)

N Symmetry Present work Experimental valuesa

2 1.31 1.41± 0.10
3 C2v 2.11 2.15± 0.07
4 D2h 2.66 2.58± 0.09
5 D3h 2.85 2.78± 0.09
6 C2v 3.05
7 D5h 3.19
8 C2 3.17
9 C3v 3.25

10 C3v 3.32

a Reference [30].

in figure 3. Our results for the ground-state structures for Ge clusters forN up to 5 are in
complete agreement with theab initio results [6–11].

The ab initio predictions for the ground-state geometries of larger-size clusters have
not been reported. Our results for these sizes of clusters should, therefore, be considered
as predictions. In the case of Ge6, we find the edge-capped trigonal bipyramid (figure 3)
to be isoenergetic with a distorted face-capped trigonal bipyramid. For Ge7, we find the
pentagonal bipyramid (figure 3) to be the most stable. In the case of Ge8, the lowest-
energy structure is a distorted bicapped octahedron with C2 symmetry (figure 3). This is
in agreement with the results of Sitchet al [3]. Another distorted octahedron with C2h

symmetry was found to be 0.03 eV/atom higher in energy. For Ge9, we find a distorted
tricapped trigonal prism proposed by Ordejonet al [14] (C2v symmetry) to be the most
stable. For Ge10 the lowest-energy structure is found to be a tetracapped trigonal prism
with C3v symmetry (figure 3). The bicapped tetragonal anti-prism structure proposed by
Sitch et al [3] as the ground state for Ge10 was found to be 0.04 eV/atom higher in energy
than the tetracapped trigonal prism.

In table 3 we give binding energies of low-energy stable clusters. In comparing our
absolutecohesive energies withab initio results, a constant shift ofU0 = 1.0 eV (see
equation (1)) applied to our computed values brought all of the values into excellent
agreement with experiment [30].

Transferability from solid to cluster is crucial to the study of crystal growth. Clusters
with N > 7 are particularly challenging on account of the high-coordination and low-
symmetry geometries. Our earlier studies of Si clusters have shown that incorporation
of nonorthogonality of the orbitals is essential to obtaining correct energetic ordering of
isomers [15, 17]. Also, as seen in table 2, there is better transferability between cluster and
bulk solid for bond lengths and vibrational frequencies.

4. Discussion and summary

We have presented a transferable nonorthogonal tight-binding scheme for germanium which
incorporates the overlap interactions explicitly and obtained agreement on a wide range of
properties for different phases. The simplicity of the original formalism is retained, and
good agreement has been obtained in the area of high-pressure metallic phases and the
vibrational frequencies.
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